Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.068
Filtrar
1.
J Chromatogr A ; 1720: 464804, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38461770

RESUMO

Advanced chemical recycling techniques provide new avenues for handling and recycling mixed plastic waste; pyrolysis is a prominent approach involving heating plastic waste in an oxygen-free environment to create pyrolysis oils. Pyrolysis oils must be thoroughly characterized before being refined into fuels and chemical feedstocks. Here, a method based on supercritical fluid chromatography with ultraviolet detection was developed to analyze plastic waste pyrolysis oils. Multiple stationary phases were examined, and 2-ethyl pyridine was chosen as the best stationary phase for resolving pyrolysis oil components. Different standards and different plastic waste pyrolysis oils were compared across the different stationary phases. Up to three columns were serially coupled to increase efficiency and column capacity. It was found that a general method using ethanol as a modifier and two 2-ethyl pyridine columns could effectively resolve plastic waste pyrolysis oils. The potential for differentiating polyethylene and polypropylene feedstocks was demonstrated using principal component analysis.


Assuntos
Cromatografia com Fluido Supercrítico , Plásticos , Plásticos/química , Pirólise , Óleos/química , Piridinas
2.
Adv Colloid Interface Sci ; 325: 103117, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38394718

RESUMO

The chemical stability of edible oils rich in polyunsaturated fatty acids (PUFAs) is a major challenge within the food and supplement industries, as lipid oxidation reduces oil quality and safety. Despite appearing homogeneous to the human eye, bulk oils are actually multiphase heterogeneous systems at the nanoscale level. Association colloids, such as reverse micelles, are spontaneously formed within bulk oils due to the self-assembly of amphiphilic molecules that are present, like phospholipids, free fatty acids, and/or surfactants. In bulk oil, lipid oxidation often occurs at the oil-water interface of these association colloids because this is where different reactants accumulate, such as PUFAs, hydroperoxides, transition metals, and antioxidants. Consequently, the efficiency of antioxidants in bulk oils is governed by their chemical reactivity, but also by their ability to be located close to the site of oxidation. This review describes the impact of minor constituents in bulk oils on the nature of the association colloids formed. And then the formation of mixed reverse micelles (LOOH, (co)surfactants, or antioxidations) during the peroxidation of bulk oils, as well as changes in their composition and structure over time are also discussed. The critical importance of selecting appropriate antioxidants and surfactants for the changes of interface and colloid, as well as the inhibition of lipid oxidation is emphasized. The knowledge presented in this review article may facilitate the design of bulk oil products with improved resistance to oxidation, thereby reducing food waste and improving food quality and safety.


Assuntos
Antioxidantes , Eliminação de Resíduos , Humanos , Antioxidantes/farmacologia , Micelas , Alimentos , Peroxidação de Lipídeos , Óleos/química , Coloides , Oxirredução , Tensoativos , Emulsões
3.
Food Chem ; 444: 138583, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38309082

RESUMO

Antarctic krill oil (AKO) is reddish-orange in color but undergoes changes during storage. To investigate the color deterioration and potential mechanisms involved, the changes in color, endogenous components (astaxanthin, fatty acids, and phospholipids), and reaction products (aldehydes, α-dicarbonyl compounds, and pyrroles) of AKO upon storage were determined. Although the visual color of AKO tended to darken upon storage, the colorimetric analysis and ultraviolet-visible spectrum analysis both indicated a fading in red and yellow due to the oxidative degradation of astaxanthin. During storage of AKO, lipid oxidation led to the formation of carbonyl compounds such as aldehydes and α-dicarbonyls. In addition, phosphatidylethanolamines (PEs) exhibited a faster loss rate than phosphatidylcholines. Moreover, hydrophobic pyrroles, the Maillard-like reaction products associated with primary amine groups in PEs accumulated. Therefore, it is suggested that the Maillard-like reaction between PEs and carbonyl compounds formed by lipid oxidation contributed to color darkening of AKO during storage.


Assuntos
Euphausiacea , Animais , Euphausiacea/química , Óleos/química , Aldeídos , Pirróis , Xantofilas
4.
Food Chem ; 445: 138702, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350200

RESUMO

Antarctic krill oil (AKO) is rich in polyunsaturated fatty acids (PUFAs), but is prone to oxidative degradation, resulting in the formation of oxylipins, which compromise AKO quality. Herein, we used reversed-phase-high performance liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) to perform qualitative and semi-quantitative analyses of oxylipins in AKO during storage. A total of 27 oxylipins were identified. A notable decrease in epoxy oxylipins (from 41.8 % to 26.9 % of the total oxylipins) was observed, whereas the content of dihydro oxylipins initially increased and then decreased with 48 h, as a pivotal point for AKO quality decline during storage. We suspected that the ratio of dihydroxyl and epoxy oxylipins could be a novel oxidative index to evaluate the oxidation of AKO. Statistical analysis allowed the identification of five oxylipins which showed unique correlations with various indexes. The findings discussed herein provide important new insights into mechanisms of oxidation occurring in AKO during storage.


Assuntos
Euphausiacea , Animais , Euphausiacea/química , Espectrometria de Massas em Tandem , Oxilipinas , Óleos/química , Oxirredução
5.
J Oleo Sci ; 73(1): 65-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171732

RESUMO

Lyotropic liquid crystals (LLCs) are interesting wall-materials for encapsulation technology, in which monoacylglycerols (MAGs) are considered as potential ingredient for LLC formulation. This study, therefore, applied palm oil-based MAGs to encapsulate Gac fruit oils and compared the effect of two drying methods (freeze-drying and spray-drying) on the quality of products during storage. Wall-materials were prepared by ultrasound dispersing MAGs/water mixtures (40/60, w/w) into Pluronic solution (2%, w/w) to formulate LLC dispersions. Then, Gac fruit oils were encapsulated by freeze-drying and spray-drying. Various technologies were applied to characterize the properties of dispersions, the encapsulated powder morphology and the loading capacity. Obtained results showed that LLC dispersions made of palm oilbased MAG were micro- and nano-emulsions which were very convenient for encapsulating Gac fruit oils. For both drying methods, ß-carotene of Gac fruit oils was successfully entrapped by MAGs with a high loading capacity (200 µg ß-carotene/g powder). The degradation of encapsulated ß-carotene after four storage weeks was 10 - 40% and freeze-dried samples showed a better protection effect in comparison to spray-dried samples.


Assuntos
Frutas , beta Caroteno , Frutas/química , beta Caroteno/análise , Óleo de Palmeira/análise , Monoglicerídeos , Pós , Óleos/química , Liofilização
6.
Appl Biochem Biotechnol ; 196(1): 220-232, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37115386

RESUMO

Lignocellulosic nanofibrils (LCNF) aerogels have a three-dimensional structure, with large specific surface area, low density, which is promising to be developed into a new type of adsorbent with high absorption capacity. However, LCNF aerogels have the problem of simultaneous oil and water adsorption. This high hydrophilicity directly leads to low adsorption efficiency in oil-water systems. This paper suggests a facile and economical method for the synthesis of biocompatible CE-LCNF aerogels using LCNF and Castor oil triglycidyl ether (CE) was successfully established. The use of LCNF enabled aerogels to possess remarkably uniform pore size and structural integrity, while the introduction of hydrophobic silica produced stable superhydrophobicity for more than 50 days at room temperature. These aerogels presented desirable hydrophobicity (131.6°), excellent oil adsorption capacity (62.5 g/g) and excellent selective sorption property, making them ideal absorbents for oil spill cleaning. The effects of ratios of LCNF to CE composition, temperatures and oil viscosity on the oil adsorption performance of aerogels were estimated. The results displayed that the aerogels had the maximum adsorption capacity at 25 °C. The pseudo-secondary model had higher validity in oil adsorption kinetic theories compared to the pseudo-first-order model. The CE-LCNF aerogels were excellent super-absorbents for oil removal. Moreover, the LCNF was renewable and nontoxic, which has the potential to promote environmental applications.


Assuntos
Celulose , Óleos , Celulose/química , Óleos/química , Géis/química , Interações Hidrofóbicas e Hidrofílicas , Temperatura
7.
Int J Biol Macromol ; 256(Pt 1): 128327, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000597

RESUMO

Frequent oil spills and illegal industrial pollutant discharge cause ecological and resource damages, so it is necessary to establish efficient adsorption and recovery strategies for oils in wastewater. Herein, inspired by solar-driven viscosity-breaking, we propose a facile approach to fabricate multifunctional nanofibrillated cellulose-based aerogel with high elasticity, excellent photothermal conversion, efficient selective oil adsorption and antibacterial properties. Firstly, copper sulfide (CuS) nanoparticles were in situ deposited on the template of oxidative nanofibrillated cellulose (ONC), aiming at achieving efficient photothermal effect and antibacterial properties. Ethylene glycol diglycidyl ether (EGDE) was employed to establish multiple crosslinking network between CuS@ONC and polyethyleneimine (PEI). A thin hydrophobic PMTS layer deposited on the surface of aerogel via a facile gas-solid reaction ensured stable oil selectivity. The resulting composite aerogel can rapidly adsorb oil under solar self-heating, significantly reducing the adsorption time from 25 to 5 min. Furthermore, it exhibits excellent adsorption capacities for various oils, retaining over 92 % of its initial capacity even after 20 adsorption-desorption cycles, and the antibacterial properties extend its lifespan. This work offers a promising method for constructing multifunctional aerogels for efficient oil-water separation, especially beneficial for high-viscosity and high-melting-point oil cleanup.


Assuntos
Celulose , Poluição por Petróleo , Celulose/química , Poluição por Petróleo/análise , Viscosidade , Géis/química , Óleos/química , Antibacterianos
8.
Int J Biol Macromol ; 256(Pt 1): 128391, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029892

RESUMO

To address the limitations of Antarctic krill oil (AKO) such as easy oxidation, unacceptable fishy flavor and low bioaccessibility of astaxanthin in it, a multiple-effect delivery vehicle for AKO is needed. In this study, whey protein isolate (WPI) and xanthan gum (XG) were utilized to construct AKO into oleogels by generating foam-templates. The effects of the concentration of XG on the properties of foam, cryogel and the corresponding oleogels were investigated, and the formation mechanism of oleogel was discussed from the perspective of the correlation between foam-cryogel-oleogel. The results demonstrated that with the increase of the concentration of XG, the foam stability was improved, the cryogel after freeze drying had a more uniform network structure and superior oil absorption ability, and the corresponding oleogel had excellent oil holding ability after oil absorption. The AKO oleogels showed superior oxidative stability compared with AKO. The in vitro digestion experiments demonstrated that the bioaccessibility of the astaxanthin in this oleogel was also considerably higher than that in AKO. In addition, this oleogel had masking effect on the odor-presenting substances in AKO, while retaining other flavors of AKO. The foam-templated oleogel can be considered as a multiple-effect vehicle for AKO to facilitate its application in food products. This study provides theoretical basis and data support for the development and utilization of novel vehicle for AKO, broadening the application of AKO in the field of food science.


Assuntos
Euphausiacea , Polissacarídeos Bacterianos , Animais , Proteínas do Soro do Leite/química , Euphausiacea/química , Criogéis , Óleos/química , Compostos Orgânicos , Xantofilas
9.
Biol Pharm Bull ; 47(1): 245-252, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092382

RESUMO

We investigated the effect of the rheological properties and composition of lecithin reverse wormlike micelles (LRWs) on the skin permeation of a model of a hydrophilic drug to determine whether LRWs support uniform hydrophilic drug/oil-based formulations and good drug penetrate into skin. Here, we prepared LRWs with D (-)-ribose (RI) or glycerol (GL) as polar compounds, liquid paraffin (LP) or isopropyl myristate (IPM) as oils, and 6-carboxyfluorescein (CF) as a model for a hydrophilic drug, and evaluated the rheological properties and skin penetration characteristics of the preparations. The LRWs showed moderate viscosity at 25 °C, a typical storage temperature, but decreasing viscosity at 32 °C, the surface temperature of human skin, suggesting that the LRWs would penetrate the microstructure of skin (e.g., wrinkles and hair follicles). The highest skin permeability of CF was observed when IPM was used as the oil, suggesting that both the stratum corneum and hair follicle routes are involved in drug permeation. The penetration of CF into hair follicles is influenced not only by the rheology of the formulation but also by the interaction between IPM and sebum in the hair follicles.


Assuntos
Lecitinas , Micelas , Humanos , Lecitinas/química , Lecitinas/metabolismo , Pele/metabolismo , Absorção Cutânea , Óleos/química , Reologia
10.
Chemosphere ; 350: 140928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092174

RESUMO

CO2-responsive microemulsion (ME) is considered a promising candidate for deep-cleaning and oil recovery from oil-contaminated soils. Understanding the responsive nature of different microstructures (i.e., oil-in-water (O/W), bicontinuous (B.C.) and water-in-oil (W/O)) is essential for unlocking the potential and mechanisms of CO2-responsive emulsions in complex multiphase systems and providing comprehensive guidance for remediation of oil-contaminated soils. Herein, the responsiveness of microstructures of ME to CO2 trigger was investigated using experimental designs and coarse-grained molecular dynamic simulations. MEs were formed for the first time by a weakly associated pseudo-Gemini surfactant of indigenous organic acids (naphthenic acids, NAs are a class of natural surface-active molecules in crude oil) and tetraethylenepentamine (TEPA) through fine tuning of co-solvent of dodecyl benzene sulfonic acid (DBSA) and butanol. The O/W ME exhibited an optimal CO2-responsive character due to easier proton migration in the continuous aqueous phase and more pronounced dependence of configuration on deprotonated NA ions. Conversely, the ME with W/O microstructure exhibited a weak to none responsive characteristic, most likely attributed to its high viscosity and strong oil-NA interactions. The O/W ME also showed superior cleaning efficiency and oil recovery from oil-contaminated soils. The results from this study provide insights for the design of CO2-responsive MEs with desired performance and guidance for choosing the favorable operating conditions in various industrial applications, such as oily solid waste treatment, enhanced oil recovery (EOR), and pipeline transportation. The insights from this work allow more efficient and tailored design of switchable MEs for manufacturing advanced responsive materials in various industrial sectors and formulation of household products.


Assuntos
Dióxido de Carbono , Óleos , Óleos/química , Tensoativos/química , Emulsões/química , Água/química , Solo
11.
Waste Manag ; 174: 273-281, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38071867

RESUMO

Preparation of carbon black (CB) by partial oxidation of the spent tyre pyrolysis oil (STPO) and its heavy residue fraction (HRF) was systematically studied using a lab-scale drop tube furnace. The effect of furnace operating temperature (T: 1100 to 1400 °C), residence time (tr: 5 to 60 s) and oxygen to feed ratio (O/F: 174 to 732) on the yield and quality of CB was examined using the response surface methodology (RSM). T was shown to have the most significant influence on CB yield and properties. While the CB yield was also influenced by tr, the quality was more sensitively dependent on T and O/F. The predicted optimal tr and O/F were approximately the same for both feedstocks (60 s and 174, respectively). However, T was higher for the HRF feedstock (1368 °C) than the STPO feedstock (1331 °C) due to the abundance of more viscous heavy hydrocarbons in HRF. Validation experiments under the aforementioned conditions demonstrated the models' ability to predict responses accurately. The CB from both feedstocks had low contents of ash (<0.03%), volatiles (∼0.5%), sulphur (<0.7%), and high carbon (≥95%). The BET surface area and average primary particle size for CB from STPO and HRF were comparable to those of commercial CBs from fossil fuel feedstock. The CB from HRF had a higher carboxyl oxygen functional group (18%) compared to the CB from STPO (∼13%) and commercial CB (<5%).


Assuntos
Oxigênio , Fuligem , Temperatura , Pirólise , Óleos/química
12.
Environ Pollut ; 344: 123245, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160778

RESUMO

Oily sludge is a prevalent hazardous waste generated in the petroleum industry, and effectively treating it remains a key challenge for the petroleum and petrochemical sectors. This paper provides an introduction to the origin, properties, and hazards of oil sludge while summarizing various treatment methods focused on reduction, recycling, and harmlessness. These methods include combustion, stabilization/solidification, oxidation and biodegradation techniques, solvent extraction, centrifugation, surfactant-enhanced oil recovery processes as well as freezing-thawing procedures. Additionally discussed are pyrolysis, microwave radiation applications along with electrokinetic method utilization for oily sludge treatment. Furthermore explored are ultrasonic radiation techniques and froth flotation approaches. These technologies have been thoroughly examined through discussions that analyze their process principles while considering influencing factors as well as advantages and disadvantages associated with each method. Based on the characteristics of oily sludge properties and treatment requirements, a selection methodology for choosing appropriate oily sludge treatment technology is proposed in this study. The development direction of processing technology has also been explored to provide guidance aimed at improving efficiency by optimizing existing processing technologies. The paper presents a comprehensive treatment method for oily sludge, ensuring that all the parameters meet the standard requirements.


Assuntos
Petróleo , Esgotos , Óleos/química , Petróleo/análise , Indústria de Petróleo e Gás , Reciclagem
14.
Water Sci Technol ; 88(9): 2264-2270, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37966181

RESUMO

A highly hydrophobic metal mesh has great potential for its application in oil/water separation due to its special wettability. However, most current oil/water separation devices are simple with limited separation capacity. A separation device based on a highly hydrophobic metal mesh was constructed for different types of oil/water mixtures. Experimental results show that the device not only can be used for the continuous separation of binary oil/water mixtures of any density ratios but also can realize the simultaneous separation of heavy oil/water/light oil ternary mixtures. This achievement is meaningful for practical applications, which will gain great interest in the future.


Assuntos
Metais , Óleos , Óleos/química , Interações Hidrofóbicas e Hidrofílicas , Molhabilidade
15.
Water Sci Technol ; 88(10): 2581-2593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38017679

RESUMO

Separation of oil and water has become a daunting task at a global scale due to the frequent presence of industrial oily wastewater. This study describes the synthesis of a Bio-Ag nanoparticle and its utilization in fabricating superhydrophobic (SH) films on textile fibers for separating oil-water mixture. The Bio-Ag nanoparticles were prepared from grape seed extract. The study examined various aspects of the synthesized SH textile fiber, including its morphology, wettability, surface composition, chemical stability, mechanical stability, oil absorption capacity, oil-water separation performance, and flux rate. The results indicate that the developed Bio-Ag-based SH textile filter has excellent SH properties, with a low water sliding angle of 1° and a high water contact angles of 159°. The SH textile filter exhibited good separation efficiency, oil absorption capacity, and flux rate toward silicone oil, toluene, and petroleum ether. The SH textile filter also demonstrated satisfactory chemical and mechanical stability. The developed Bio-Ag-based SH textile filter has the potential to be an efficient material for oil-water separation applications.


Assuntos
Nanopartículas Metálicas , Interações Hidrofóbicas e Hidrofílicas , Óleos/química , Biomassa , Prata , Têxteis
16.
Cryo Letters ; 44(2): 76-79, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883157

RESUMO

BACKGROUND: Due to the instability in oil/water emulsion, certain labile active ingredients were often not used in cosmetics. OBJECTIVE: The present study has tested the effect of freeze-drying to stabilize an oil/water cosmetic emulsion. MATERIALS AND METHODS: A preliminary freeze-drying process was established at the basis of calorimetric and freeze-drying microscope studies. The stability of labile molecules in the cosmetic emulsion was evaluated at 48 degree C after freeze-drying. RESULTS: The accelerated stability experiment showed that the freeze-dried emulsion retained 90.1% vitamin C after 28 days at 48 degree C, whereas the oil-water emulsion retained only 28.3% vitamin C. The freeze-dried emulsion had significantly less oil oxidation than did the oil-water emulsion. CONCLUSION: Freeze-drying improved the stability of vitamin C and oily active ingredients in cosmetic emulsions. DOI: 10.54680/fr23210110312.


Assuntos
Criopreservação , Óleos , Emulsões/química , Óleos/química , Liofilização , Ácido Ascórbico
17.
Langmuir ; 39(42): 14891-14903, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37819843

RESUMO

With the frequent occurrence of offshore oil spills, the effective separation and treatment of oily wastewater are essential to the environment. In this work, the core-shell bioreactor (abbreviated as Fe3O4/MHNTs-CNF@aerogel) was prepared with a core composed of camphor leaf cellulose-based aerogels for loading microorganisms and a shell derived from hydrophobic silane-modified halloysite doping with Fe3O4 for selective absorption of oil and maganetic recycling. The core-shell-structured bioreactor Fe3O4/MHNTs-CNF@aerogel has excellent self-floating properties and can float on water for up to 100 days. The whole core-shell structure not only has excellent oil/water separation performance but also has good microbial degradation performance. By applying it in water containing 5% diesel for the biodegradation test, the biodegradation efficiency of Fe3O4/MHNTs-CNF@aerogel for diesel can reach 82.4% in 10 days. The efficiency was 20% higher than for free microorganisms, and it still had excellent degradation ability after three degradation cycles, with a degradation rate of over 75%. In addition, the result obtained from the study on environmental tolerance shows that Fe3O4/MHNTs-CNF@aerogel possessed a strong tolerance ability under different pH and salinity conditions. The Fe3O4/MHNTs-CNF@aerogel also has superior mechanical properties; i.e., nearly no deformation occurs at 30 kPa. Compared with those conventional oil/water separation materials which can only absorb or separate the oils for water with limited capacity and taking the risk of secondary contamination, our core-shell-structured bioreactor is capable of not only selectively absorbing oil from water through its hydrophobic shell but also degrading it into a nontoxic substance by its microorganism-loaded core, thus showing great potential for practical application in oily wastewater treatment.


Assuntos
Óleos , Purificação da Água , Óleos/química , Interações Hidrofóbicas e Hidrofílicas , Biodegradação Ambiental , Fenômenos Magnéticos
18.
Environ Sci Pollut Res Int ; 30(46): 102389-102401, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37665434

RESUMO

Over the past few years, the environment and public safety have suffered due to the detrimental effects of oily industrial effluents. Natural fibers have gained popularity for their affordability, reusability, and effectiveness in separating oil from oily wastewater. Milkweed fibers were characterized using FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy), and contact angle techniques. With four porosities (0.90, 0.92, 0.95, and 0.98), deep bed coalescence filters were built at three different filter bed heights (10 mm, 20 mm, and 30 mm). Using milkweed coalescence filtering technology, a novel oil separation method is described along with a method to calculate oil film thickness following emulsified oily water saturation. By combining a bed height of 30 mm and a porosity of 0.98, a maximum oil separation of 99.73% and an optimized D50 droplet ratio were achieved. Throughout a prolonged operational period lasting 250 min, the filter bed, possessing a depth of 30 mm and a porosity of 98%, exhibited no discernible fouling indications. Following five cycles, the milkweed filter bed measuring 30 mm in depth and featuring a porosity of 98% displayed an impressive oil separation efficiency of 91.5%. This study found that using a milkweed deep bed filter, coalescence filtering effectively removes oil from oily effluent. Furthermore, milkweed is a natural and biodegradable fiber that is easy to dispose of after use and does not harm the environment.


Assuntos
Óleos , Águas Residuárias , Emulsões , Óleos/química , Filtração , Água
19.
Chemosphere ; 340: 139803, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37579821

RESUMO

Rapid and efficient recovery of oil spill is the key link for oil spill remediation, and also a great challenge. Here, the organogelator-polymerized porous matrix composed of adsorbents and organogelators can provide a new strategy for solving this problem. The gelling mechanism of aluminum 12-hydroxystearate (Al HSA) to form spherical nano micelles in solvents was investigated via UV-vis, FT-IR, and XRD. A creative method for aluminum soap-lignin gelator (OTS-AL/Al HSA) syntheses was put forward through the saponification of 12-hydroxystearic acid (HSA) and lignin via epichlorohydrin (ECH) crosslinking. By adjusting the ECH content, the growth of Al HSA nanoparticles (15-40 nm) on lignin can be realized, and the accordingly increased roughness endowed gelator with better hydrophobicity (WCA of 134.6°) before octadecyltrichlorosilane (OTS) modification. Thanks to the porous structures, the gelator powder exhibited a high sorption capacity in the range of 3.5-5.2 g g-1 for oils and organic solvents. Rheological studies demonstrated high mechanical strength of gels (>1.6 × 105 pa) and the gelator still retained 70% sorption capacity after 6 gelation-distillation cycles. The gelation characteristics of OTS-AL/Al HSA were attributed to the rapid sorption of oils by lignin and the self-assembly of Al HSA nano micelles on lignin to form an aggregated network structure trapping oils, thus realizing the synergistic effect of oil sorption-gelation.


Assuntos
Lignina , Água , Água/química , Pós , Alumínio , Sabões , Espectroscopia de Infravermelho com Transformada de Fourier , Óleos/química , Solventes/química , Géis/química
20.
Int J Biol Macromol ; 252: 126417, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604424

RESUMO

Recycling herbal residues for oily wastewater purification is a potential way to use the wastes to treat wastes. Cellulose extracted from herbal residues is a fine material for cryogel fabrication. However, the cellulose cryogels were not suitable for oily wastewater treatment due to their amphiphilicity. To address this issue, the cryogels were modified with methyltrimethoxysilane (MTMS), which made them hydrophobic and reduced their surface energy. In this study, the herbal residues (Ficus microcarpa L. f) were used in cryogel preparation for the first time. The cryogels exhibit super lightweight and low density. The modified cryogels show excellent sorption capacity for free oils, especially silicone oil (51.22 g/g), and outperformed some recent sorbents. They also effectively separated water-in-toluene emulsion stabilized by Span 80, with a separation efficiency of 98.57 % and a flux of 1474.67 L/m2h. This study demonstrated a novel application of waste herbal residues in the field of environmental remediation.


Assuntos
Celulose , Purificação da Água , Celulose/química , Criogéis/química , Óleos/química , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...